

ITL9-1 Industrial Triode

The Marshall Components ITL9-1 is a power triode designed specifically for industrial applications.

- Uses a coaxial design and metal-ceramic technology
- May operate in CW or pulse mode. For operation in pulse mode, the parameters depend on each equipment characteristics.
- It is an forced air cooled triode.
- The anode voltage is 12kV.
- Output power is 25kW in CW mode.
- The max anode dissipation is 8.5kW.
- The frequency up to 120MHz.

General Characteristics

Electrical

Thoriated-tungsten mesh **Filament**

(+5%, -10%) 5.8V Filament voltage

Filament Current 145A Surge current (max) 600A Cold resistance $5m\Omega$ Amplification factor (approx) 22

Capacitances:

Grid to filament 21.0pF Grid to anode 55.0pF Transconductance (Ua:4kV,Ia:4A)(approx) 50mA/V

Mechanical

Operating position Vertical, Anode up or down

Maximum dimensions: see outline drawing

Net weight 4. 4 kg

Maximum ratings

Frequency 120MHz

Anode voltage

up to 30MHz 12kV up to 30 to 60MHz 9kV up to 60 to 90MHz 7kV from 90 to 160MHz 6kV Control-grid voltage -1.0kV

Anode current, CW 4A

Control-grid current:

at full load 0.8A at no load 1.5A Peak cathode current, CW 25A

Anode dissipation

Inlet air temperature, 25°C 8.5kW Inlet air temperature, 45°C 5kW

Grid dissipation:

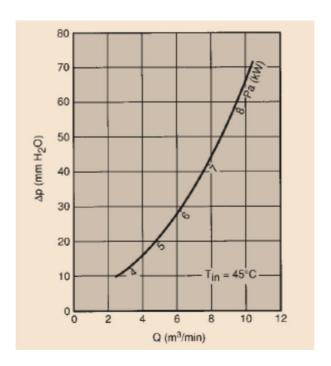
350W up to 30MHz up to 30 to 60MHz 320W up to 60 to 90MHz 300W from 90 to 160MHz 280W $10k\Omega$

Grid resistance (at blocked tube)

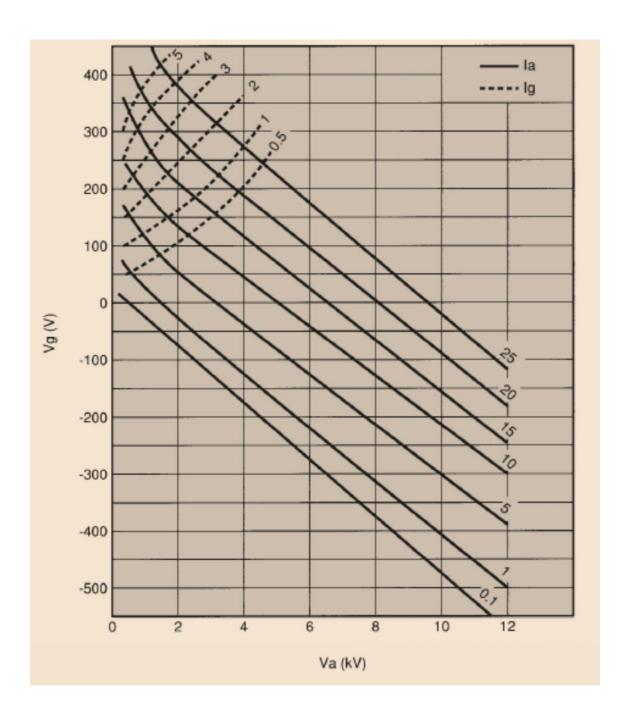
Cooling

Anode cooling forced air Cooling air flow 2 m³/min 45°C max Inlet air temperature Temperature at any point on tube envelope 220°Cmax

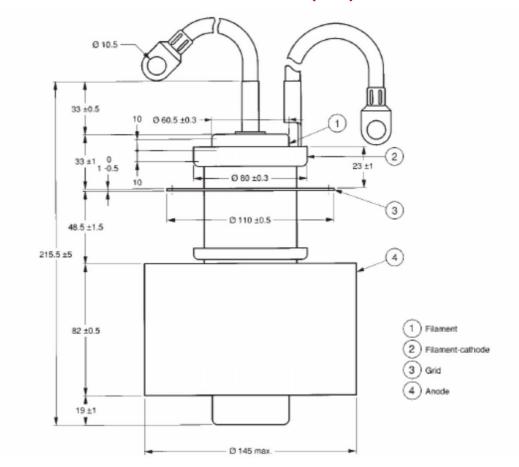
Typical operation

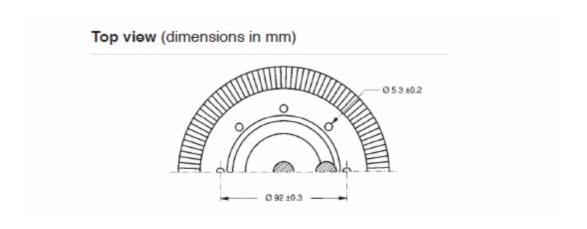

Class C RF oscillator for industrial applications

Examples	1	2	
Frequency	30	30	MHz
Anode voltage	10	8	kV
Grid bias	-610	-520	V
Grid voltage	860	7775	V
Anode current	3.3	3.4	Α
Grid current on load	0.35	0.40	Α
Anode input power	33	27.2	kW
Anode output power	24.7	19	kW
Anode dissipation	8.0	7.6	kW
Grid dissipation	76	88	W
Grid resistance	1750	1300	Ω
Feedback ratio	9.6	11.1	%
Oscillator efficiency	74.8	70	%


Cooling curves

- The required flow rates and pressures drop may be read off the cooling curve.
- This is valid for both air-flow directions. The maximum values given for the inlet-air temperature, the cooler temperature the metal-ceramic solder points must be respected.
- Pa: anode dissipation
- Δp : pressure drop across the cooler fins Q: air flow rate
- Tin: inlet air temperature




CONSTANT CURRENT CHARACTERISTICS

OUTING DRAWING (MM)

