ITL2-1 Air-cooled Triode

The Marshall Components ITL2-1 is a medium-power triode designed specifically for industrial applications.

- Uses a coaxial design and metal-ceramic technology.
- May operate in CW or pulse mode. For operation in pulse mode, the parameters depend on each equipment characteristics, contact us for specific information.
- The ITL2-1 is an air cooled triode.
- The anode voltage is 7.2kV.
- Output power is 5kW in CW mode.
- The max anode dissipation is 1.5kW
- The frequency up to 160MHz.

General Characteristics

Electrical

Filament Thoriated-tungsten mesh

Filament voltage 6.3V
Filament Current 35A
Surge current (max) 125A
Amplification factor 21

Direct interelectrode capacitances:

Grid to filament 17.0pF
Grid to anode 14.0pF
Filament to anode 0.5pF

Mechanical

Operating position Vertical, Anode up or down

Maximum dimensions: see outline drawing

Net weight 1.1 kg

Maximum ratings

Frequency 160MHz

Anode voltage

 $\begin{array}{c} \text{up to 85MHz} & 7.2 \text{kV} \\ \text{from 85 to 160MHz} & 6 \text{kV} \\ \text{Control-grid voltage} & -1.0 \text{kV} \\ \text{Anode current, CW} & 1.2 \text{A} \end{array}$

Control-grid current:

at full load CW 0.28A at no load CW 0.4A
Peak cathode current, CW 7.5A
Anode dissipation 1.5kW

Grid dissipation:

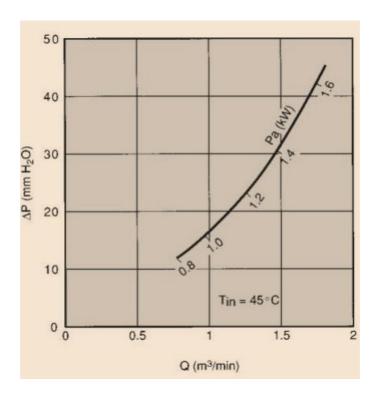
 $\begin{array}{c} \text{up to 85MHz} & \text{130W} \\ \text{from 85 to 160MHz} & \text{100W} \\ \text{Grid resistance (at blocked tube)} & \text{10k}\Omega \end{array}$

Cooling

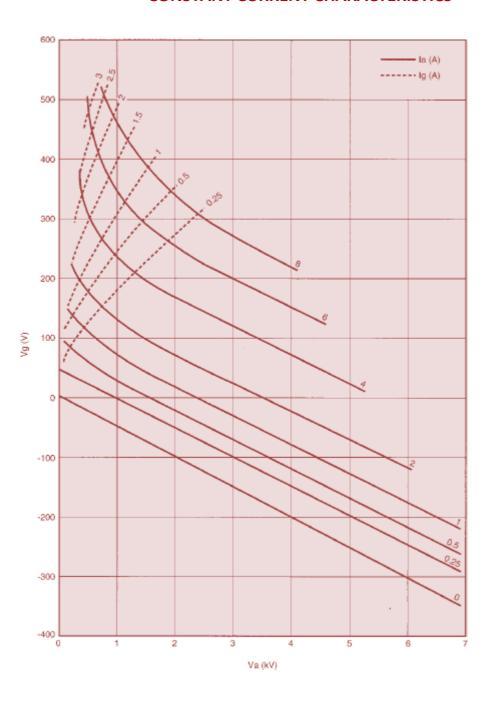
Anode cooling forced air

Cooling see cooling curves

 $\begin{array}{lll} \mbox{Cooling air flow} & \mbox{1 m}^{3}/\mbox{min} \\ \mbox{Inlet air temperature} & \mbox{45}^{\circ}\mbox{C max} \\ \mbox{Temperature at any point on tube envelope} & \mbox{220}^{\circ}\mbox{Cmax} \\ \end{array}$

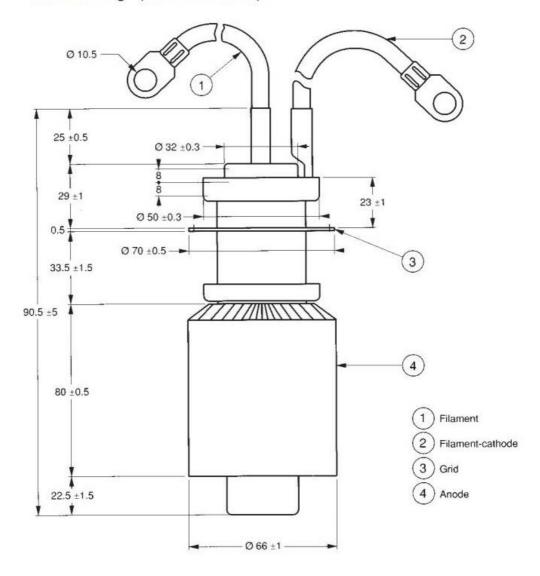

Typical operation

Class C RF oscillator for industrial applications

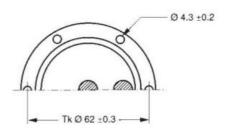

Examples	1	2	
Frequency	30	30	MHz
Anode voltage	5	5	kV
Grid bias	-470	-420	V
Grid voltage	790	760	V
Anode current	1.1	1.1	Α
Grid current on load	0.24	0. 27	Α
Anode input power	6.6	5.5	kW
Anode output power	5.0	4.1	kW
Anode dissipation	1.5	1.2	kW
Grid dissipation	65	77	W
Grid resistance	1900	1500	Ω
Feedback ratio	14.6	16.6	%
Oscillator efficiency	75	75	%

Cooling curves

- The required flow rates and pressures drop may be read off the cooling curve.
- This is valid for both air-flow directions. The maximum values given for the inlet-air temperature, the cooler temperature the metal-ceramic solder points must be respected.
- Pa: anode dissipation
- $\triangle p$: pressure drop across the cooler fins Q: air flow rate
- Tin: inlet air temperature



CONSTANT CURRENT CHARACTERISTICS



OUTING DRAWING (mm)

Outine drawing (dimensions in mm)

Top view (dimensions in mm)

